На правах рукописи



# Шастунова Ульяна Юрьевна

# ТЕПЛОМАССООБМЕН В СИСТЕМЕ «ГОРЯЧИЙ РЕЗЕРВУАР – ОСНОВАНИЕ - МЕРЗЛЫЙ ГРУНТ»

Специальность 01.04.14 Теплофизика и теоретическая теплотехника

ΑΒΤΟΡΕΦΕΡΑΤ

# диссертации на соискание ученой степени кандидата физико-математических наук

Тюмень - 2018

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Тюменский государственный университет» (ФГАОУ ВО «ТюмГУ).

| Научный руководитель  | Доктор физико-математических наук, профессор,<br>Кислицын Анатолий Александрович                                                                                                                                                  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Официальные оппоненты | Доктор физико-математических наук, профессор<br>Ахметова Оксана Валентиновна<br>(Стерлитамакский филиал Башкирского<br>государственного университета, заведующая<br>кафедрой общей и теоретической физики)                        |  |
|                       | Кандидат физико-математических наук, доктор<br>геолого-минералогических наук,<br>Горелик Яков Борисович<br>(Институт криосферы Земли СО РАН, главный<br>научный сотрудник, заведующий лабораторией<br>тепломассообменных явлений) |  |
| Ведущая организация   | ПАО «Гипротюменнефтегаз» (Тюменский проектный и научно-исследовательский институт нефтяной и газовой промышленности им. В.И. Муравленко) (г. Тюмень)                                                                              |  |

Защита состоится 26 декабря 2018 г. в 15-00 часов на заседании диссертационного совета Д 212.274.10 при ФГАОУ ВО «Тюменский государственный университет» по адресу: 625003, г. Тюмень, ул. Перекопская 15а, ауд. 410.

Тел.: 89129946831 e-mail: u.y.shastunova@utmn.ru

С диссертацией можно ознакомиться в Информационно-библиотечном центре ФГАОУ ВО «Тюменский государственный университет» и на сайте <u>https://diss.utmn.ru/sovet/diss-sovet-</u> <u>212-274-10/zashchita/585619/</u>

Автореферат разослан «\_\_\_» \_\_\_\_ 2018 г.

Ученый секретарь диссертационного совета Д 212.274.10 д. ф.-м. н.

Удовиченко С.Ю.

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность работы

Согласно 1 принципу строительства на многолетнемерзлой породе (далее - ММП) важно сохранять грунт в мерзлом состоянии в течение всего периода эксплуатации сооружения.

В связи с этим особую актуальность приобретает изучение процессов тепломассопереноса в грунтах и их взаимодействие с инженерными конструкциями. Важно решать совместную задачу «окружающая среда – сооружение - грунт».

Большинство современных моделей тепломассопереноса в ММП не учитывают все значимые факторы, а именно наличие ветра, солнечной радиации, тепловые режимы работы инженерной конструкции, многослойность фундамента, свойства мерзлой породы в основании и другие. Также не рассматривают взаимного теплового влияния грунта и конструкции, не учитывают миграцию поровой влаги и возникающий с ней конвективный перенос тепла.

Недостаточная изученность влияния обозначенных факторов на точность прогнозных расчетов не позволяет в полной мере гарантировать эксплуатацию сооружения. В связи с этим актуальными является задача решения системы уравнений тепломассопереноса в системе «инженерная конструкция – основание» с учетом основных значимых факторов. Значима также задача экспериментального исследования процессов оттаивания и замерзания мерзлой породы под горячим объектом с целью проверки адекватности предлагаемой физико-математической модели.

### Цель и задачи работы

Объектом исследования является нефтехранилище, а именно резервуары стальные вертикальные, стоящие на многолетнемерзлом грунте.

Целью работы является совершенствование физико-математической модели, описывающей процессы тепломассопереноса в мерзлом грунте под инженерной конструкцией, в части учета конвективного переноса тепла поровой влагой при растеплении ММП под «горячим» резервуаром, с целью повышения надежности эксплуатации резервуарных парков в сложных геокриологических условиях.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Обосновать необходимость уточнения физико-математической модели, учитывающей основные факторы, влияющие на оценки ореола протаивания ММП под горячим резервуаром.

2. Создать экспериментальную установку для изучения ореола оттаивания мерзлого грунта под горячим резервуаром и выявления необходимости учета конвективного теплопереноса при решении задачи Стефана о протаивании мерзлого грунта.

3. Получить результаты приближенного аналитического решения двумерной задачи Стефана о протаивании мерзлого грунта с учетом конвективного переноса тепла; сопоставить их с экспериментальными данными.

3

4. Разработать численную физико-математическую модель, описывающую процессы тепломассопереноса как в резервуаре, так и в мерзлом грунте под нефтехранилищем с учетом конвективного переноса тепла свободной поровой влаги после растепления.

5. Провести серию теплотехнических расчетов с целью изучения влияния конвективного переноса тепла на ореол оттаивания в мерзлом грунте.

Научная новизна исследований представлена следующими положениями:

1. Экспериментально подтверждено ранее обнаруженное возникновение конвективного теплопереноса талой водой, что приводит к деформации фронта протаивания и ускоряет его движение. Оценка числа Рэлея подтверждает возможность возникновения конвективных потоков в талой зоне. Оценка числа Пекле согласуется с экспериментально найденным увеличением скорости движения фронта протаивания.

2. Экспериментально получены температурные поля в мерзлом грунте при заполнении резервуара горячим теплоносителем (нефтью), изменение формы и положения фронта плавления льда (изотермы T = 0 °C) с течением времени. Показано существенное влияние на нулевую изотерму наличия в поровом пространстве грунта свободной воды и ее движения.

3. Впервые представлено приближенное квазистационарное решение двумерной задачи Стефана о протаивании мерзлого грунта с учетом конвективного переноса тепла. Полученное решение находится в удовлетворительном согласии с экспериментальными данными.

4. Впервые предложена и изучена физико-математическая модель, описывающая тепломассоперенос в системе «мерзлый грунт - основание – горячий резервуар», учитывающая конвективный перенос свободной поровой влаги после оттаивания грунта под горячим резервуаром и взаимное влияние элементов системы. Новизна модели заключается в том, что теплофизическая задача решается в совместной постановке: расчетные данные, полученные после технического расчета теплового режима резервуара, при разных способах эксплуатации, используются как исходные данные для теплотехнического расчета ореола оттаивания под резервуаром.

#### Основные положения, выносимые на защиту:

1. Экспериментальная установка и методика измерений движения свободной воды в оттаявшем грунте под горячим резервуаром.

2. Установленный факт существенного влияния конвективного теплопереноса в уравнении теплопроводности при решении задачи теплового взаимодействия горячего резервуара с протаивающими грунтами.

3. Физико-математическая модель и результаты расчетного анализа тепломассопереноса в системе «резервуар – основание – мерзлый грунт».

Практическая значимость работы состоит в следующем:

Полученные результаты дополняют имеющиеся представления о теплофизических процессах, протекающих в мерзлом грунте при эксплуатации инженерных сооружений в районах Крайнего Севера на структурнонеустойчивых грунтах, дают возможность учесть совокупность факторов и внести уточнения в процесс моделирования тепловой задачи в системе «конструкция – основание - мерзлый грунт».

Разработанная физико-математическая модель тепломассопереноса в системе «горячий резервуар – основание – мерзлый грунт» и методика расчета теплового воздействия резервуара с горячим теплоносителем на мерзлый грунт с учетом конвективного переноса тепла свободной поровой водой может быть использована при модернизации существующих программных комплексов, предназначенных для проектирования нефтехранилищ и других объектов на структурно неустойчивых грунтах.

Разработанная экспериментальная установка позволяет изучать тепловые процессы, происходящие в мерзлом грунте, при влиянии на него тепловых потоков от инженерных конструкций.

Достоверность полученных результатов и выводов обеспечена использованием в экспериментальных исследованиях современных методов измерений и компьютерной техники; основана на использовании фундаментальных уравнений теплофизики; обусловлена корректной постановкой задач; подтверждается достаточной обоснованностью принятых допущений и обеспечена количественным совпадением полученных численных решений с известными аналитическими зависимостями и экспериментальными данными.

Личный вклад автора состоит в разработке физико-математической модели тепломасоопереноса в системе «горячий резервуар – основание – мерзлый грунт», создании экспериментальной установки и проведении экспериментальных и теоретических исследований по определению влияния конвективного переноса тепла свободной поровой водой в мерзлых грунтах, обработке полученных результатов, разработке методики решения задачи теплового взаимодействия резервуара на мерзлый грунт в совместной постановке задачи. В опубликованных совместно с соавторами научных статьях вклад соавторов равнозначен.

#### Апробация работы

Результаты исследований докладывались и обсуждались на российских и международных межотраслевых научных семинарах и конференциях. Их перечень приведен ниже.

- Международная научно практическая конференция молодых ученых и специалистов «Стратегия инновационного развития, строительства и освоения районов Крайнего Севера», посвященная 20-летию ООО НПО «Фундаментсройаркос» (Тюмень, 2011 г.);
- Международная научно-практическая конференция «Наука сегодня» (Вологда, 2015);
- Международная научно-практической конференции «Достижения и проблемы современной науки» (Уфа, 2016 г.);
- Региональный конкурс студенческих научных работ 2015, ТюмГНГУ (Тюмень, 2015 г.);
- Х-я школа-семинар «Теплофизика, гидрогазодинамика и инновационные технологии» под руководством заслуженного деятеля науки, д.т.н., процессора А.Б. Шабарова (Тюмень, 2016);
- Научный семинар кафедры механики многофазных систем ТюмГУ (Тюмень, 2011, 2013, 2016, 2018 гг).

**Публикации** Основное содержание диссертационной работы опубликовано в 13 работах, в том числе в 2 статьях, входящих в перечень ВАК, и 3 публикациях в изданиях, входящих в международные базы данных. Их список приведен в конце автореферата.

#### Структура и объем диссертации

Диссертация состоит из введения, пяти глав, заключения, списка цитируемой литературы. Материал изложен на 152 страницах, включает 44 рисунка, 13 таблиц. Список цитируемой литературы содержит 118 источников.

## КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

**Во введении** обоснована актуальность темы, формулируются цели и задачи исследования, пути их решения, изложена научная новизна, практическая значимость работы, приведены основные результаты и положения, выносимые на защиту.

**Первая глава** посвящена обзору основных причин аварий резервуарных парков. Описан процесс тепломассопереноса в инженерной конструкции и в грунте, рассмотрены свойства грунтов, неизотермический влагоперенос, существующие методики расчетов температурных полей под горячими конструкциями, проведен анализ существующих физико-математических моделей, которые описывают систему «конструкция - основание - грунт».

Проведенный в этой главе анализ физико-математических моделей, описывающих тепловое взаимодействие инженерной конструкции с просадочными грунтами, показал, что для корректного описания системы с таким взаимодействием, недостаточно, в ряде случаев, учитывать лишь обычно используемые параметры, такие как радиацию, наличие ветра, облачности и т.д. Для получения более достоверных оценок теплового состояния грунта под резервуаром необходимо учитывать влияние дополнительного переноса тепла, который осуществляется переносом свободной поровой влаги в оттаявшем грунте.

Вторая глава посвящена технологической схеме экспериментальной установки и методике проведения эксперимента по изучению теплового влияния горячего резервуара на мерзлый грунт, изменении температур внутри резервуара в газовом и жидкостном пространстве.

Экспериментальные данные по изучению влияния теплового потока от горячего резервуара в мерзлый грунт подтверждают ранее выявленное возникновение вертикального фильтрационного потока талой воды, и, благодаря этому, существенное (примерно в два раза) увеличение средней скорости движения фронта протаивания. Здесь же обосновывается необходимость учета конвекционной составляющей в уравнении теплопроводности при решении задачи Стефана и изменении физико-математической модели в системе «резервуар-основание-грунт».

Схема экспериментальной установки представлена на рис. 1. Нагрев нефти осуществляется в системе коаксиальных сосудов. Согласно

действующим стандартам температура нефтепродуктов в нефтехранилище может достигать 40°С. Используемый в эксперименте грунт представлен супесями. Исследование теплофизических свойств грунта было проведено. Данные исследования приведены в таблице 1.

Таблица 1. Теплофизические свойства грунта

| Плотность, кг/м <sup>3</sup>      |               | 2083 |
|-----------------------------------|---------------|------|
| Влажность, %                      |               | 21   |
| Теплопроводность, Вт/(м·К)        | мерзлый грунт | 3,13 |
|                                   | талый грунт   | 2,38 |
| Удельная теплоемкость, кДж/(кг·К) | мерзлый грунт | 0,95 |
|                                   | талый грунт   | 1,06 |



Рисунок 1 – Схема экспериментальной установки: 1 – персональный компьютер; 2 – климатическая камера 2250х1600х2000 мм; 3 – криостат; 4 – нагревательный элемент; 5 – емкость для нагрева нефти; 6 – насос; 7 – вход в систему охлаждающих труб; 8 – выход из системы охлаждающих труб; 9 – модель резервуара вертикального стального; 10 – шланг для перекачки хладагента; 11 – шланг для перекачки теплоносителя; 12 – теплоизоляция рабочей области; 13 – датчики температуры; 14 – грунт; 15 – система охлаждающих труб; 16 – деревянный лоток 1190х1290х350мм.

Влажность грунта непосредственно перед проведением эксперимента была определена методом высушивания до постоянной массы согласно ГОСТ 5180-84.

Автоматизированная система измерения температуры в модели грунта состоит из 50 цифровых датчиков температуры DS18B20, подключенных к персональному компьютеру через СОМ порт (Рис. 2 и 3). Поскольку рассматриваемая задача радиально-симметрична, датчики расположены по радиусу резервуара. В целях минимизации погрешности измерений вследствие смещения датчиков применена решетка для их фиксации. Для работы с датчиками используется программа ТетрКеерег, с помощью которой осуществляется считывание и сохранение показаний температуры. Метрологические характеристики датчика: диапазон измеряемых температур от минус 55 °C до

125 °C; абсолютная погрешность не превышает  $\pm 0,5$  °C в диапазоне температур от минус 10 °C до 85 °C. Перед проведением эксперимента все датчики прошли калибровку.



Рисунок 2 – Схема расположения температурных датчиков



Рисунок 3 - Схема подсоединения датчиков температуры к персональному компьютеру. ПК-персональный компьютер; БП –блок питания; ДТ – датчики температуры.

Перед началом эксперимента была запущена в работу климатическая камера, и произведено охлаждение грунта до -10°С. После этого был включен подогрев резервуара, и показания температуры считывались с датчиков с интервалом в 3 минуты. По истечении девяти часов эксперимент был завершен.

В начале закачки пустого «холодного» резервуара температура нефти резко упала, что объясняется передачей тепла холодным стенкам и днищу резервуара. Но спустя небольшое время, как только сталь нагрелась, температура теплоносителя стала увеличиваться и достигла значения, до которого была разогрета в резервуаре для нефти.

В режиме выстаивания температура нефти уменьшалась по экспоненциальной зависимости, что хорошо согласуется с описанной зависимостью Тугунова.

Что касается изменения температуры газового пространства, то в связи со сложной картиной конвективных потоков газа внутри резервуара, температура увеличивалась и после достижения максимальной температуры нефти, и достигнув максимального значения 24°C стала уменьшаться по экспоненциальной зависимости.

При исследовании теплового состояния грунта резервуар был заполнен до 25% от всего объема и температура теплоносителя поддерживалась постоянной. По показаниям датчиков с помощью программного пакета Sigma Plot были построены поля температур в мерзлом грунте в различные моменты времени. Некоторые результаты приведены на рисунках 4-7.

На этих рисунках видно, что протаивание грунта начинается через несколько минут после начала прогрева; через 10 минут нулевая изотерма находится на глубине  $\approx$  1см; в дальнейшем температура грунта растет, ореол протаивания увеличивается, и в момент окончания эксперимента (9 часов) глубина оттаивания достигает 14 см. Как и следовало ожидать, распределение температур и фронт плавления (изотерма T = 0°C) почти симметричны относительно вертикальной оси, проходящей через центр модели резервуара. Небольшие отклонения от симметрии можно объяснить неизбежными погрешностями эксперимента.





Рисунок 4 - Температурное поле грунта через t =10 минут после включения подогрева.



Рисунок 5 - Температурное поле грунта через t =1.5 часа после включения подогрева.



Рисунок 6 - Температурное поле грунта через t = 4.5 часа после включения подогрева.



Однако неожиданным оказывается изменение формы фронта плавления со временем. Вначале, как и должно быть, фронт имеет форму овала с плавно и монотонно меняющимся радиусом кривизны. Но через 1.5 часа в центре фронта начинается формирование выступа ("языка"), который со временем растет, и в конце прогрева фронт имеет четко выраженную центральную зону, продвинутую далеко вперед по сравнению с боковыми участками.

Объяснить это можно тем, что т.к. объем воды меньше объема льда, в оттаявшем грунте появляются поры, через которые талая вода движется вниз к центру фронта плавления, возникает конвективный перенос тепла, из-за чего увеличивается скорость протаивания.

**Третья глава** посвящена описанию методики определения температур газового пространства и горячей жидкости в резервуаре с течением времени.

При любом тепловом расчете основополагающим уравнением является

уравнение теплового баланса

 $G \cdot \rho \cdot c \cdot (T_{cp} - T) \cdot dt - k_t \cdot S \cdot (T - T_0) \cdot dt = (V_0 \cdot \rho \cdot c + G \cdot t \cdot \rho \cdot c + m_0 c_0) dT,$ (1)где G- скорость закачки (производительность подачи теплоносителя),  $M^{3}_{c}$ ;  $G \cdot t \cdot \rho$  - масса закачиваемой воды, кг;  $V_{0}$ - объем теплоносителя в резервуаре, находящийся в момент начала данного этапа закачки, <sub>м<sup>3</sup></sub>;  $m_0$  - масса пустого резервуара, кг; C,  $C_0$  - теплоемкость теплоносителя и материала резервуара (стали),  $\frac{\mathcal{A}\mathcal{H}}{\kappa_2 \cdot C}$ ; *t* - текущее время, с;  $S = S_{dha} + S_{\kappa possuu} + S_{\delta o \kappa. cmeha}$  - полная поверхность охлаждения емкости (сумма площадей кровли, днища и стенки), <sub>м<sup>2</sup></sub>; k<sub>t</sub> - коэффициент теплопередачи от резервуара в окружающую среду через стенки, днище и кровлю резервуара,  $Bm/_{M^2,\circ C};$ *Т*<sub>ср</sub>- начальная температура подаваемой среды (далее - теплоносителя) при закачке, °C; T - текущее значение температуры теплоносителя в резервуаре в данный момент времени, °C; T<sub>0</sub>- температура окружающей среды, °С.

Преобразуем уравнение (1) к удобному для интегрирования виду. Для этого произведем замену:  $t_0 = \frac{m_0 c_0}{G \cdot \rho \cdot c}$  - характерное время;  $t_1 = \frac{V_0}{G}$  - время, в течение которого будет производиться заполнение;  $k = \frac{k_t S}{G \cdot \rho \cdot c}$  безразмерный коэффициент теплообмена (параметр Шухова);  $\tau = \frac{t}{t_0}$  текущее безразмерное время;  $\tau = \frac{t_1}{t_0}$  - безразмерное время, необходимое для заполнения резервуара на очередной уровень.

После преобразования уравнение (1) имеет вид

$$\frac{dT}{(T_{cp}-T)-k\cdot(T-T_0)} = \frac{d\tau}{(\tau'+\tau+1)}.$$
(2)

После интегрирования закон изменения температуры во время заполнения резервуара в зависимости от производительности насоса и времени заполнения выглядит следующим образом

$$T = \frac{T_{cp} + k \cdot T_0}{k+1} - \frac{\left(\tau + 1\right)^{k+1} \cdot \left(T_{cp} + k \cdot T_0 - T_k \cdot (k+1)\right)}{\left(k+1\right) \cdot \left(1+\tau+\tau\right)^{k+1}}.$$
(3)

Уравнение (3) позволяет определить температуру теплоносителя в любой момент времени в процессе закачки резервуара. Пользуясь этим уравнением, можно при заданной температуре определить время, в течение которого температура изменится от начальной до допустимой при различных скоростях закачки и объема резервуара.

Закон изменения температуры теплоносителя при заполнении пустого резервуара имеет вид:

$$T = \frac{T_{cp} + k \cdot T_0}{k+1} - \frac{T_{cp} - T_0}{(k+1) \cdot (1+\tau)^{k+1}}.$$
(4)

Процесс охлаждения теплоносителя при эксплуатации резервуара (выстаивание) может быть описан, исходя из уравнения теплового баланса (1), составленного для заполненного резервуара:

$$-k_t \cdot S \cdot (T - T_0) \cdot dt = (V_0 \cdot \rho \cdot c + m_0 \cdot c_0) \cdot dT.$$
<sup>(5)</sup>

В уравнении вместо времени заполнения резервуара появляется время выстаивания t. Кроме того, объем теплоносителя и площадь теплопередачи не изменяется. Закон изменения температуры в этом случае может быть записан в виде

$$T = T_0 + (T_{_{H}} - T_0) \cdot e^{\frac{-t}{k'}},$$
(6)

где  $T_{\mu}$  - температура теплоносителя после заполнения резервуара, °C;  $k' = \frac{(V_0 \cdot \rho \cdot c + m_0 \cdot c_0)}{k_t \cdot s} = \frac{t' + t_0}{k}$ .

Уравнение (6) представляет собой выражение, аналогичное известной формуле В.Г. Шухова для охлаждения резервуара. Однако в этой формуле имеются зависимые переменные: производительность насоса, высота налива, время закачки. Кроме того, в формуле В.Г. Шухова коэффициент теплопередачи  $k_t$  определяется по достаточно сложным уравнениям, учитывающим теплообмен между отдельными частями резервуара (днищем, крышей, стенками) и жидкостью в резервуаре.



Рисунок 8 - Схема теплообмена резервуара с окружающей средой: индексы *g*,*l*,*s*, обозначают соответственно, газовую, жидкую и грунтовую составляющие системы

На рисунке 8 представлена схема передачи тепла от горячего теплоносителя В окружающую среду через ограждающую конструкцию резервуара. Для резервуара значение коэффициента теплопередачи *k*<sub>t</sub> должно быть вычислено с учетом характера теплопередачи через ограждающую конструкцию резервуара:

$$k_t = \frac{k_{\mathrm{ZH}} \cdot S_{\mathrm{ZH}} + k_{\mathrm{CT.\Gamma.}} \cdot S_{\mathrm{CT.\Gamma.}} + k_{\mathrm{CT.\mathcal{K}.}} \cdot S_{\mathrm{CT.\mathcal{K}.}} + k_{\mathrm{KP}} \cdot S_{\mathrm{KP}}}{S},$$

где  $k_{\text{дн}}, k_{\text{ст.г.}}, k_{\text{ст.ж.}}, k_{\text{кр}}$  – коэффициенты теплопередачи через днище, стенку

Коэффициент теплопередачи через днище определяем по формуле:

$$k_{\rm дH} = \frac{1}{\frac{1}{\alpha_{1\rm dH}} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \frac{\pi \cdot \delta_{\rm rp}}{8\lambda_{\rm cp}}},\tag{7}$$

где  $\delta_i$  [м] и  $\lambda_i$  [Вт/м·К]– толщина и теплопроводность, соответственно, стальной стенки днища резервуара, изоляции и т.д.;  $\alpha_{1\text{дн}}$  – коэффициент теплообмена от теплоносителя к внутренней стенки днища емкости, Вт/м<sup>2</sup>·К.

Коэффициент теплопередачи через стенку в области газового пространства находим по формуле:

$$k_{\rm CT.\Gamma.} = \frac{1}{\frac{1}{\alpha_{1\rm CT.\Gamma}} + \frac{\delta_{\rm CT}}{\lambda_{\rm CT}} + \frac{1}{\alpha_{2\rm CT.\Gamma} + \alpha_{3\rm CT.\Gamma} + \alpha_{4\rm CT.\Gamma}}},\tag{8}$$

где  $\alpha_{1 \text{ст.r}}$  — коэффициент теплообмена от газовоздушной смеси к вертикальной стенке емкости;  $\alpha_{2 \text{ст.r}}$ ,  $\alpha_{3 \text{ст.r}}$ ,  $\alpha_{4 \text{ст.r}}$  — коэффициенты теплообмена от стенки резервуара к окружающей среде за счет вынужденной и свободной конвекции, излучения.

Коэффициент теплопередачи через стенку в области жидкости:

$$k_{\rm CT.\mathcal{K}.} = \frac{1}{\frac{1}{\alpha_{\rm 1CT.\mathcal{K}}} + \frac{\delta_{\rm CT}}{\lambda_{\rm CT}} + \frac{1}{\alpha_{\rm 2CT.\mathcal{K}} + \alpha_{\rm 3CT.\mathcal{K}}}},\tag{9}$$

где  $\alpha_{1cm.\mathscr{H}}$  – коэффициент теплообмена от теплоносителя к вертикальной стенке резервуара за счет вынужденной конвекции, создаваемой потоком теплоносителя;  $\alpha_{2,3 \ cm.\mathscr{H}}$  – коэффициенты теплообмена окружающей среды.

Коэффициент теплопередачи через кровлю находится по формуле:

$$k_{\kappa p} = \frac{1}{\frac{1}{\alpha_{1\kappa p}} + \frac{\delta_{\kappa p}}{\lambda_{\kappa p}} + \frac{h_{\text{ra3.np}}}{\lambda_{3\kappa \theta}} + \frac{1}{\alpha_{2\kappa p} + \alpha_{3\kappa p}}},$$
(10)

где  $\alpha_{1\kappa p}$  – коэффициент теплообмена от «зеркала» теплоносителя в газовое пространство резервуара за счет свободной конвекции, Вт/м<sup>2</sup>·К;  $\lambda_{3\kappa e}$  – эквивалентный коэффициент теплопроводности газовоздушной смеси, Вт/м·К;  $h_{2a3.np}$  – полная высота газового пространства, м.

Коэффициенты теплообмена  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  определяются в соответствии с видом конвекции по известным критериальным уравнениям.

Согласно формулам 6-10 можно оценить в зависимости от режима работы резервуара тепловые потоки через ограждающую конструкцию.

**Четвертая глава** посвящена приближенному квазистационарному аналитическому решению задачи Стефана с конвективной составляющей. Уравнение для задачи о протаивании грунта (двумерной задачи Стефана (Stefan) в цилиндрических координатах *r*, *x* в классической постановке без учета конвекции) имеет вид:

$$\frac{\partial T_{1,2}}{\partial t} = a_{1,2} \left( \frac{\partial^2 T_{1,2}}{\partial r^2} + \frac{1}{r} \frac{\partial T_{1,2}}{\partial r} + \frac{\partial^2 T_{1,2}}{\partial x^2} \right).$$
(11)

Талая и мерзлая зоны разделены движущейся поверхностью (фронтом плавления) F(r, x, t) = 0. Начальным условием является отсутствие талой зоны и равенство температуры во всей области начальному значению  $T_{in}$ . Граничные условия на неподвижных границах имеют вид:

$$T_1|_{x=0} = T_0, \left. \frac{\partial T_{1,2}}{\partial r} \right|_{r=0} = 0, \quad T_2(r \to \infty, x \to \infty) \to T_{in}.$$

Температуру поверхности грунта в области соприкосновения с дном резервуара  $T_0$  будем считать равной температуре нефти, циркулирующей в нем. В наших экспериментах  $T_{in} = -8$  °C,  $T_0 = 33$  °C. На фронте плавления задано равенство температур  $T_1 = T_2 = 0$  °C, а также условие баланса энергии, которое часто называют условием Стефана:

$$(\lambda_1 | gradT_1 | -\lambda_2 | gradT_2 |)|_{F=0} = L \frac{\partial F / \partial t}{| gradF|}.$$
(12)

Точного аналитического решения данная задача не имеет. Будем искать приближенное решение уравнения (11) в виде T(F), где F = const - уравнение изотермической поверхности; в частности, <math>F = 0 - уравнение нулевой изотермы. Функцию F будем искать в виде:

$$F = x - f(r) - z(t), z(t) = \int_0^t g(t) dt.$$
(13)

Дифференцируя T(F) по r, x, t, находим:

$$\frac{\partial I}{\partial r} = -T' \cdot f',$$

$$\frac{\partial^2 T}{\partial r^2} = f'^2 \cdot T'' - T' \cdot f'',$$

$$\frac{\partial^2 T}{\partial x^2} = T'',$$

$$\frac{\partial T}{\partial t} = -g \cdot T',$$
(14)

где 
$$T' = \frac{dT}{dF}, \quad T'' = \frac{d^2T}{dF^2}, \quad f' = \frac{df}{dr}, \quad f'' = \frac{d^2f}{dr^2}.$$

Подставляя (14) в (11) и пренебрегая различием между  $a_1$  и  $a_2$  (т.е. считаем  $a_1 \approx a_2 \approx a$ ), получаем обыкновенное дифференциальное уравнение относительно функции f(r):

$$B^{2}(1+f'^{2}) - f'' - \frac{1}{r}f' + \frac{g}{a} = 0,$$
<sup>(15)</sup>

где 
$$B^2 = T''/T'$$
. (16)

Для уравнения (15) может быть получено аналитическое решение, если считать величины g и  $B^2$  константами. Такое решение описывает движение фронта плавления с постоянной скоростью. Для рассматриваемой задачи для всего процесса прогрева данное предположение неприемлемо. Однако можно

разбить процесс прогрева на достаточно короткие интервалы времени  $\Delta t$ , внутри которых считать скорость g постоянной. Далее, подставляя градиенты найденных таким образом температур в условие Стефана (12), найти изменение координаты фронта  $\Delta z(t)$ , и, таким образом, найти z(t) по шагам. Физически данное допущение означает, что фронт плавления движется настолько медленно, что можно считать температурное поле мало отличающимся от стационарного (квазистационарное приближение):

$$\Delta z \ll \sqrt{a\Delta t}$$
, или  $\Delta t \ll a/g^2$ . (17)

Вводя обозначения

$$B^{2} + g/a = A^{2}, y = ABr, f' = -w'(y)/(B^{2}w(y)),$$
  
преобразуем уравнение (15) к виду:

$$w'' + \frac{1}{y}w' + w = 0,$$
 (18)

решением которого является функция Бесселя (Bessel) первого рода нулевого порядка  $J_0(y)$ .

Возвращаясь к прежним обозначениям, и учитывая очевидное требование  $f'|_{r=0} = 0$ , получаем решение для функции f(r):

$$f(r) = -\frac{1}{B^2} ln[J_0(ABr)].$$
(19)

Очевидно, полученное решение имеет смысл, если

$$ABr < 2.4, \tag{20}$$

где 2.4 – первый нуль функции Бесселя *J*<sub>0</sub>.

Обозначим радиус прогретой области через R, и, полагая ABR = 2.4, из определения величины A находим:

$$g = a \left(\frac{2.4}{BR}\right)^2 - aB^2. \tag{21}$$

С другой стороны, интегрируя (16), с учетом граничных условий, находим:

$$T_{1}' = \frac{B^{2}T_{0}exp(B^{2}F)}{exp(-B^{2}z) - 1}, \quad T_{1} = T_{0}\frac{exp(B^{2}F) - 1}{exp(-B^{2}z) - 1}, \quad (22)$$
$$T_{2}' = -B^{2}T_{in}e^{-B^{2}F}, \quad T_{2} = T_{in}(1 - e^{-B^{2}F}).$$

Подставляя в условие (12), получаем второе соотношение между g и  $B^2$ :

$$g = \frac{B^2}{L} \left( \frac{\lambda_1 T_0}{exp(-B^2 z) - 1} - \lambda_2 T_{in} \right).$$
<sup>(23)</sup>

Приравнивая правые части уравнений (21) и (23), получаем трансцендентное уравнение относительно величины  $B^2$ . С его помощью, разбивая процесс прогрева на интервалы времени  $\Delta t$ , удовлетворяющие условию (17), и используя экспериментальные значения *z*, *R* и  $T_0$ , находим  $B^2$ , *g*, и расчетные значения *z*. Однако найденная таким образом скорость движения фронта существенно оказывается существенно ниже экспериментальной, что подтверждает предположение о возникновении конвективного переноса тепла.

Запишем уравнение теплопроводности с учетом конвективного переноса тепла; при этом будем считать, что существенным является конвективный перенос только по оси x, а перенос по оси r пренебрежимо мал:

$$\frac{\partial T}{\partial t} + \upsilon(r, t) \frac{\partial T}{\partial x} = a \left( \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial x^2} \right).$$
(24)

Как и выше, будем искать решение в виде T(F), а функцию F будем искать в виде:

$$F = x - f(r) - h(r) \int_0^t g(t)dt = x - f(r) - h(r) \cdot z(t), \ v(r,t) = g(t) \cdot h(r),$$
(25)

где функцию f(r) будем считать известной из предыдущего решения для неподвижной среды, а безразмерную функцию h(r) – неизвестной.

Дифференцируя T(F) по r, x, t, и подставляя в (24), получаем дифференциальное уравнение для функции h(r):

$$B^{2}[1 + (f' + h'z)^{2}] - (f'' + h''z) - \frac{1}{r}(f' + h'z) = 0,$$
<sup>(26)</sup>

где  $B^2$ , как и выше, определяется формулой (16).

Выполняя замену  $y = B^2 \cdot r$ ,

$$f' + h'z = -u'/(B^2u),$$
 (27)

получаем уравнение для функции и:

$$\frac{d^2u}{dy^2} + \frac{1}{y}\frac{du}{dy} + u = 0,$$
(28)

совпадающее по форме с уравнением (18).

Решением этого уравнения является функция Бесселя  $u = J_0(y) = J_0(B^2 r)$ , а  $u' = -B^2 \cdot J_1(B^2 r)$ .

Из уравнения (27) находим:

$$h'(r) = -\frac{1}{z} \left( \frac{u'}{B^2 u} + f' \right) = \frac{1}{z} \left( \frac{J_1(B^2 r)}{J_0(B^2 r)} - \frac{AJ_1(ABr)}{BJ_0(ABr)} \right).$$
(29)

Интегрируя по *r* в области положительных значений правой части уравнения (29), получаем:

$$h(r) = \frac{1}{zB^2} \left[ h_0 - ln \frac{J_0(B^2 r)}{J_0(ABr)} \right].$$
(30)

Константа интегрирования  $h_0$  должна быть выбрана так, чтобы ликвидировать разницу между расчетными и экспериментальными значениями z(t). Результат расчетов представлен на рисунке 9 в виде функции F(r,x,t)=0 в различные моменты времени t, а также на рисунке 10 в виде зависимости координаты центра фронта от времени. Видно, что учет конвективного переноса тепла позволяет достичь удовлетворительного согласия с экспериментальными данными.

Как видно из рисунка 9, расстояние между изотермами 0°С и +4°С вблизи

оси r = 0 равно  $\Delta z \approx 2$  см. Именно в этой области, с учетом отрицательного значения коэффициента объемного расширения воды  $\beta_T \approx -6.4 \cdot 10^{-5}$  1/K, возможно возникновение конвекции при нагреве сверху.



Рисунок 10 - Движение фронта протаивания в мерзлом грунте при различном радиусе

Обозначив через перепад температур  $\Delta T = 4$ К, оценим число Рэлея:

$$Ra = \frac{\beta_T \Delta T g_0(\Delta z)^3}{va} > 10^5.$$

Полученная оценка на 2 порядка превышает пороговое значение 10<sup>3</sup>, при котором возникают конвективные потоки, что является еще одним подтверждением возможности данного эффекта.

Оценивая из экспериментальных данных по формуле (25) значение средней проекции скорости талой воды на вертикальную ось r = 0, находим в конце прогрева  $v \approx 2 \cdot 10^{-6}$  м/с, откуда число Пекле

$$Pe = \frac{v\Delta z}{a} = 0.6$$

Это означает, что конвективный перенос тепла, хотя и не является определяющим, но дает заметный (~30...40%) вклад в скорость протаивания.

В пятой главе описана физико-математическая модель тепломассопереноса системы «горячий резервуар – основание – мерзлый грунт» и приведено подробное описание процесса моделирования, а также полученные результаты численного моделирования, которые хорошо согласуется с экспериментальными данными. Также в главе 5 проведено исследование по определению основополагающих и особо значимых параметров, которые оказывают существенное влияние процесс на тепломассоопереноса в системе «горячий резервуар – основание - мерзлый грунт».

Компьютерное моделирование данной проблемы рассмотрено несколькими авторами [Ваганова Н.А., Башуров В.В., Гишкелюк И. А.], которые подтверждают вывод, полученный экспериментально автором, что движение жидкости в грунте создает дополнительный термальный поток, который необходимо учитывать при решении уравнения теплопроводности. В малообводненных грунтах этим механизмом можно пренебречь, что не относится к грунтам на севере России, по которым проходят большинство действующих и строящихся трубопроводов, объектов ТЭК.

Физико-математическое моделирование основано на численном решении системы уравнений, состоящей из уравнений теплового баланса для газовой и нефтяной фазы, уравнения расхода теплоносителя, уравнения теплопроводности в двухмерной постановке с учетом фазовых превращений и миграции свободной поровой влаги.

Нестационарная теплофизическая модель представлена в следующем виде:

$$\begin{aligned} Q_{g} &= -Q_{g1} + Q_{go1} + Q_{go2} - Q_{l} \\ Q_{l} &= Q_{l1} + Q_{lo} + Q_{ls} + Q_{lg} \\ \frac{\partial T_{s}}{\partial t} &= a_{s} \cdot \left(\frac{1}{r} \cdot \frac{\partial}{\partial r} \cdot \left(r \cdot \frac{\partial T_{s}}{\partial r}\right) + \frac{\partial^{2} T_{s}}{\partial z^{2}}\right) + \mathcal{G}_{r} \cdot \frac{\partial T_{s}}{\partial r} + \mathcal{G}_{z} \left(\frac{\partial T_{s}}{\partial z}\right), \end{aligned}$$
(31)  
$$\mathcal{G}_{r} &= -K \cdot \frac{\partial w}{\partial r}, \mathcal{G}_{z} = -K \cdot \frac{\partial w}{\partial z} \\ G &= \pi R^{2} \cdot \frac{dh}{dt} \end{aligned}$$

$$\begin{split} Q_{g} &= C_{g} \cdot \rho_{g} \cdot \pi R^{2} \cdot (H-h) \cdot \frac{d(T_{g}-T_{0})}{dt}; \qquad Q_{l} = C_{l} \cdot \rho_{l} \cdot \pi R^{2} \cdot (h) \cdot \frac{d(T_{l}-T_{0})}{dt};; \\ Q_{g1} &= C_{g} \cdot \rho_{g} \cdot \pi R^{2} \cdot (T_{g}-T_{0}) \cdot \frac{d(H-h)}{dt}; \qquad Q_{l1} = C_{l} \cdot \rho_{l} \cdot \pi R^{2} \cdot (T_{lo}-T_{l}) \cdot \frac{d(h)}{dt} \\ Q_{g01} &= k_{g01} \cdot (T_{g}-T_{0}) \cdot \pi R^{2}; \qquad Q_{lo} = k_{lo} \cdot (T_{l}-T_{0}) \cdot 2\pi R h \\ Q_{g02} &= k_{g02} \cdot (T_{g}-T_{0}) \cdot 2\pi R \cdot (H-h); \qquad Q_{ls} = k_{ls} \cdot (T_{l}-T_{s}) \cdot \pi R^{2} \\ Q_{lg} &= \alpha_{gl} \cdot (T_{g}-T_{l}) \cdot \pi R^{2} \end{split}$$

где  $T_0$  - температура окружающей среды, К;  $T_{lo}$  - температура теплоносителя на входе в резервуар при постоянном расходе G, К;  $k_{go1}$ ,  $k_{go2}$ ,  $k_{lo}$ ,  $k_{ls}$ коэффициенты теплопередачи, соответственно, через кровлю, боковую стенку резервуара в области газового, в области жидкого пространств, через днище BT/(M<sup>2</sup>·K);  $\alpha_{gl}$  и  $\alpha_{lg}$ - коэффициент теплообмена от газовоздушной смеси к «горячему» теплоносителю и обратно, BT/(M<sup>2</sup>·K);  $C_{g,l,s}$  и  $\rho_{g,l,s}$  - теплоемкость и плотность газовоздушной смеси, теплоносителя и грунта, соответственно,  $\alpha_{m} (\kappa_{z} \cdot \kappa)$ , м; R, H - радиус и высота резервуара, м; h- высота налива теплоносителя, м; G- расход теплоносителя,  $M^3/c$ ,  $\alpha_s$  - коэффициент температуропроводности грунта,  $M/c^2$ ,  $\mathcal{G}_r$  и  $\mathcal{G}_z$  -скорость фильтрации поровой влаги, K –изотермический коэффициент влагопроводности,  $M/c^2$ , w - весовая влажность.

Система (31) решается с использованием неявной схемы со следующими начальными и граничными условиями:

Начальные условия:  
при 
$$t = 0$$
  $h = 0$ ,  
 $T_g = T_0, T_l = T_{lo},$   
 $J = k_{ls} \cdot (T_l - T_s) \cdot \pi R^2 = 0$   
на  $z = 0$   $T_s = T_0$   
 $T_g = T_0$ ,  $T_l = T_{lo}$ ,  
 $J = k_{ls} \cdot (T_l - T_s) \cdot \pi R^2 = 0$   
 $T_s = T_0$   
 $J = k_{ls} \cdot \pi R^2 \cdot (T_l - T_s) = \lambda \frac{\partial T_s}{\partial z}\Big|_{z=0}$ 

По результатам численного решения и экспериментального исследования представлены графики, отражающие динамику фронта на рисунке 11 грунта. Как видно, численное решение нестационарной протаивания теплофизической модели в системе «резервуар – основание» с учетом влияния поровой влаги дает достаточно хорошее миграции совпадение С экспериментальными данными нежели без ее учета.



Рисунок 11 Динамика фронта протаивания мерзлого грунта.

– (сплошная линия) экспериментальные значения.

---- (пунктирная линия) – численное решение с учетом конвекции;

\*\* - численное решение без учета конвекции.

Предложенная модель может быть использована для расчета температурного режима мерзлых грунтов в естественных условиях, что позволит спрогнозировать процессы, происходящие в мерзлой породе.

Описанная модель может быть адаптирована для прогнозирования тепловлажностного состояния многолетнемерзлых грунтов – оснований для прочих инженерных конструкций, например, трубопроводов, зданий, объектов топливно-энергетического комплекса.

## ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Экспериментально установлено существенное влияние миграции поровой влаги на форму и скорость движения фронта протаивания грунта в процессе теплового взаимодействия в системе «резервуар – основание – мерзлый грунт». Тем самым обоснована необходимость учета дополнительного потока тепла вызванного конвективной составляющей при моделировании процесса тепломассопереноса в мерзлом грунте под резервуаром.

2. Найдено приближенное аналитическое (квазистационарное) решение задачи Стефана с учетом конвективной составляющей в уравнении теплопроводности влажного грунта в цилиндрических координатах. Показано, что конвективный перенос тепла дает существенный (~30...40%) вклад в скорость протаивания по сравнению с расчетами, в которых пренебрегается конвекцией талой воды.

3. Разработана методика решения задачи теплового режима резервуара, которая позволяет определять температуру теплоносителя в любой момент времени в разные эксплуатационные периоды.

4. Разработана нестационарная теплофизическая модель тепломассопереноса системы «горячий резервуар - основание - мерзлый грунт», учитывающая миграцию поровой влаги. Результаты численного решения хорошо согласуются с экспериментальными данными и с приближенным аналитическим решением.

# СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

#### Наиболее значимые публикации

1. Шастунова У.Ю. Тепловой режим гидравлических испытаний резервуара вертикального стального объемом 20000 м<sup>3</sup> / Г.В. Бахмат, А.А. Кислицын, У.Ю. Шастунова// Вестник Тюменского государственного университета. - 2011. - №7. - с.64-72.

2. Шастунова У.Ю. Экспериментальное исследование температуры стенки стального резервуара с горячим нефтепродуктом в зимнее время / Б. В. Григорьев, У. Ю. Шастунова, Ю. Ф. Янбикова // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. - 2017. - Том 3, № 3. - С. 29-39.

## Публикации в изданиях, входящих в международные базы данных

3. Shastunova U. Yu. Experimental study and a mathematical model of the processes in frozen soil under a reservoir with a hot heat-transfer agent / A. A. Kislitsyn, U. Yu. Shastunova, Yu. F. Yanbikova // Journal of Engineering Physics and Thermophysics. -2018. - Vol. 91, No.2. - 507-514.

4. Shastunova U. Termal interference of engineering construction with permafrost ground as bottom / Ulyana Shastunova, Pavel Michailov // International Science Conference SPbWOSCE-2016 "SMART City" St. Petersburg, Russia, November 15-17, 2016. -  $N_{2}1. - 02018$  (Section 2 Buildings and Structures. Basement and foundations) (*Web of Science, Scopus*).

5. Shastunova U. Physical and mathematical modeling of process of frozen ground thawing under hot tank /M.Y.Zemenkova, U Shastunova, A Shabsrov, A Kislitsyn, A Shuvaev // International Conference "Transport and Storage of Hydrocarbons". IOP Conf.Series: Vaterials Science and Engineering 357 (2018) 012007 (*Scopus*).

## Публикации в других изданиях

6. Шастунова У.Ю. Физико-математическое моделирование полей температуры и льдистости в мерзлых грунтах вокруг заглубленного трубопровода / У. Ю. Шастунова, А. Б. Шабаров [и др.] // Материалы Международной научнопрактической конференции по инженерному мерзлотоведению, посвященной XX-летию создания ООО НПО «Фундаментстройаркос» – Тюмень: «Сити-Пресс», 2011. - С. 225-229.

7. Шастунова У.Ю. Методика расчета теплового режима резервуара типа РВС в зимнее время во время эксплуатации / У. Ю. Шастунова, А. А. Кислицын, Г. В. Бахмат // Материалы Международной научно-практической конференции по инженерному мерзлотоведению, посвященной XX-летию создания ООО НПО «Фундаментстройаркос» – Тюмень: «Сити-Пресс», 2011. - С. 301-306.

8. Шастунова У.Ю. Экспериментальное и теоретическое исследование процесса протаивания мерзлого грунта под резервуаром для хранения нефтепродуктов / У. Ю. Шастунова, А. А. Кислицын // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. -2015. - Т. 1, № 6. - С. 15-25.

9. Шастунова У.Ю. Расчет системы охлаждения мерзлого грунта под резервуаром с мазутом / У. Ю. Шастунова, Ю.Ф. Янбикова // Достижения и проблемы

современной науки: сборник статей Международной научно-практической конференции – Уфа, 2015. - Вып. часть 1. - С. 48-54.

10. Шастунова У.Ю. Методика расчета теплового воздействия горячего резервуара на мерзлый грунт / У. Ю. Шастунова, Ю.Ф. Янбикова // Наука сегодня: сборник научных трудов по материалам международной научно-практической конференции – Вологда, 2015. - Вып. часть 1. - С. 80-83.

11. Шастунова У.Ю. Теплофизика. Тепломассоперенос и теплотехника. Расчетно-экспериментальное исследование тепломассопереноса при нестационарных условиях: научное издание / У. Ю. Шастунова, Б.В. Григорьев, Л.А. Пульдас, А.В. Шаталов, Ю.Ф. Янбикова, Я.А. Кузьменкова, Д.Ю. Легостаев. - Тюмень: Издательство Тюменского государственного университета, 2016. - 47 С.

12. Шастунова У.Ю. Исследование температурного режима резервуара с нефтепродуктами в зимнее время / У. Ю. Шастунова, Д.А. Дмитриевская // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. - 2016. – Т. 2, №1. - С. 26-33.

13. Шастунова У.Ю. Расчетно-экспериментальное исследование процессов протаивания и систем термостабилизации мерзлого грунта под резервуаром для отстаивания нефти / У. Ю. Шастунова, Ю.Ф. Янбикова // Сборник статей IX школы-семинара молодых ученых «Теплофизика, гидрогазодинамика, теплотехника. Инновационные технологии». Тюмень: 2016. – с. 191-199.